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TECHNICAL REPORT SUMMARY

In this contract, we set out to find practical methods of using the pulse
shape of observed seismic body waves to infer as much as possible about the
motions which must have occurred at the seismic source itself. Previous
attempts on this problem had given insufficient attention to the constraints
which follow from requiring a physically plausible stress on the fault plane.
We believe we have made substantial progress towards the solution of this pro-
blem. Full details of what we have done are contained in papers already pub-
lished or now in preparation. It is likely that a total of six papers will
result from the support provided by this contract. They are as follows:

(1) Detailed Spectral Analysis of Two Small New York Earthquakes,
by J. Boatwright, published in the Bulletin of the Seismological Society of
America, 68, 1117-1131, 1978. This work was described in full in a previous
semi-annual report. It gave a complete account of the inversion of amplitude
spectra of strong-motion accelerograms obtained at epicentral distances of only
about 1 kilometer, to obtain source dimensions and stress drops for two events
in the eastern U.S.

(11) A Spectral Theory for Circular Seismic Sources; Simple Esti-
mates of Source Dimension, Effective Stress and Radiated Seisnic Energy, by
J. Boatwright, submitted for publication in the Bulletin of the Seismological
Society of America. This work was described in full in a previous semi-annual
report. It described the pulse shapes to be expected for a fault rupture which
initiated at a point and subsequently grew as an expanding circle. A variety
of stopping mechanisms were discussed, and it was shown that a useful method
of data processing involved working with the square of the observed particle
velocity recorded at a given station.

(111) Quasi-Dynamic Models of Simple Earthquakes and the Impli-
catione of Energy Flux Pulse Shapes as Modelling Constraints, by J. Boatwright,
now in final stages of preparation for submission probably to the Bulletin of
the Seismological Society of America. A copy of this manuscript is included
in this report. A model of fault slip that is satisfactory during stages of
rupture, healing and stopping is discussed in terms of the far-field pulse
shapes it will generate. An application is given for two earthquakes which
occurred in Alaska. Estimates are given of rupture velocity and stress re-
lease.

(iv) Investigations of Two High Stress-Drop Earthquakes in the
Shumagin Seismic Gap, Alaska, by L. House and J. Boatwright. It is curreatly
intended that this paper will be submitted for publication in the Journal of
Geophysical Research. A copy of the manuscript is given in this report. It
is inferred that the two earthquakes analysed had stress-drops in excess of
500 bars.

(v) Body Wave Analysie of the St. Elias Earthquake, section written
by J. Boatwright for inclusion (with contributions from other authors) in a
major paper on this large and recent event., From the far-field pulse shapes,
it was inferred that three separate sub-events could be distinguished within
this rupture. A copy of the manuscript in included in this report.




(vi) Elementary Solutions to Lamb's Problem for a Point Source and
Their Relevance to the Study of Spontameous Crack Propagation in Three Dimen-
stons, by Paul G. Richards, accepted for publication in the August 1979 issue
of the Bulletin of the Seismological Society of America. In order to determine
the slip occurring on a rupturing fault plane, the dynamic consideration of
effects of initial stress and varying fault strength can be handled if a
certain fundamental problem in elasticity theory is solved in a fashion that
admits rapid computation of the solution. This paper (a copy is included in
this report) gives such a solution, and discusses its significance in the
analysis of rupturing fault planes.

The four sections that follow are the expanded accounts of (iii), (iv),
1 (v) and (vi) above.
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QUASI-DYNAMIC MODELS OF SIMPLE EARTHQUAKES AND THE
IMPLICATIONS OF ENERGY FLUX PULSE SHAPES

AS MODELLING CONSTRAINTS1

John Boatwright
Lamont-Doherty Geological Obgervatory and
Department of Geological Sciences
of Columbia University

Palisades, New York 10964
ABSTRACT

We have designed a code by which ome can compute the far-field
body wave displacement and energy flux pulse shapes from a series of
"quasi-dynamic” models of rupture. The integration over the (kine-
matic) slip velocity is calculated on a radial grid using the
Fraunhofer approximation. The specification of the slip velocity on
the grid is/deriwed from theoretical and finite difference solutiomns
for the mixed boundary value problem of a 3-D frictionmal rupture
model. The analytic form for the slip velocity is naturally divided
into two phases: the rupture growth, in which the slip distribution
is self-gimilar and elliptical, and the healing, during which the slip
velocity, multiplied by a linearly decreasing factor, goes to zero.
The arrival of a P-wave stopping phase, generated by the stopping events

which determine the fault perimeter, determines the onset of the healing.

- Lamont~Doherty Geological Observatory Contribution Number 0000.
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The form of the healing factor, applied to the rupture fromt, produces
a realistic stopping of the rupture, enabling one to model directly
a wide range of high-frequency body wave spectra.

These quasi-dynamic models yield radiation efficiencies consistent
with the theoretical resultsg of Kostrov (1974), so that the computed
energy flux pulse shapes and the time-Integrated energy flux may be
used as constraints in the modelling of simple ruptures. In particular,
the distinct variation of the energy flux pulse shapes provides seismo-
logists with a useful model discriminant, with implications for the
determination of both rupture growth and stopping behavior for multiply
recorded earthquakes.

We have applied this waveform modelling approach to the analysis
of two high stress drop earthquakes which occurred in the Shumagin
Islands, Alaska, on May 6, 1974. We analysed both short period WWSSN
data and strong motion accelerograph data obtained from an SMAL at
Sand Point. The energy flux modelling is shown to provide an estimate
of the rupture velocity and thereby establish closer bounds for the

estimates of stress release.
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INTRODUCTION

The forward problem of modelling seismic sources by matching the
waveforms observed at a restricted set of stations is strongly non-
unique, as has been shoun by a number of authors, notably Anderson and
Richards (1976) and Boore and Stierman (1976). These and other papers
have established the possibility of fitting the observed waveforms
equally well with different source models incorporating a wide range of
prescribed slip-functions. Analysis of the inverse problem of seismic
source theory (Kostrov, 1975) indicates that this non-uniqueness results
from the inherent nature of the seismic observations, in particular the
integral nature of the source representation, rather than from inade-
quate station coverage.

While the appropriate slip function cannot be resolved from seismic
obgervations, the final source models determined using different slip
functions can differ substantially, particularly in their estimates of
rupture velocity and source dimension. Since both the usual modelling
estimates of stress released in tectonic earthquakes (i.e., the dynamic
stress drop, Tys and the static stress drop, Ac) depend strongly on
these parameters (Boatwright, 1979), the problem of choosing an appro-
priate slip function 1is of obvious seismological significance. It is
this choice which this paper seeks to restrict in a heuristic fashionm,
through the use of dynamically consistent rupture models.

In order to determine a suitable source model, or class of source
models, it {s necessary to consider both a general fracture model and

an appropriate set of Initfal conditions. Our fracture model is




derived from a frictional theory of rupture, i.e., the rupture is
modelled as a growing region of stress relaxation, where the stress
acting on the (unhealed) rupture area is specified to be the dynamic
frictional stress. We presume the initial loading stress to be approx-
imately constant or- to decrease away from the rupture origin, and the
final rupture area to be simple and planar. These assumptions restrict
the application of our rupture model to small and moderate sized earth-
quakes, as large earthquakes may have strongly complex ruptures
(Ranamori and Stewart, 1977).

To complete our model description, we need to assume a fracture
criterion and a suitable distribution of fracture strength, which will
then determine the motion of the crack tip. For simplicity, however,
the rupture velocity is assumed to be constant and subsonic. While
this behavior approximately corresponds to a particular fracture crit-
erfon (i.e., the strain weakening model of Andrews, 1976), the resulting
source model adequately describes ruptures which grow with weakly
varying rupture velocities. The rupture velocities determined from
the modelling will then represent average rupture velocities.

Our source models are kinematic descriptions of the relative slip
velocity which solve, in an approximate fashion, the dynamic problem
outlined above. These "quasi-dynamic" models incorporate two basic
physical considerations. First, because of the abrupt stress release
of the frictional model, the crack tip is the dominant source of radi-
ated energy. The dynamic solution of Kostrov (1964) for rupture growth
with a constant rupture velocity gives the self-gimilar, "elliptical®

slip distribution, in which the glip velocity is at a maximum as the




crack tip passes and then slows asymptotically to a constant value.
Second, the healing of the rupture starts at the perimeter of the rup-
ture area as a result of the stopping of the crack tip, and the omset

of healing propagates into the interior at the compressional wave velo-
city. The healing is also assumed to be momotonic, i.e., we do not
attempt to incorporate breakout phases which result from the inter-
action of the rupture with a free surface (Burridge and Halliday, 1971),
and we presume that in the presence of a finite dynamic frictional stress
the rupture will heal without reversal of slip.

These dynamic considerations for our kinematic models naturally
divide the slip at any point within the rupture area into two distinct
parts, which ve will refer to as the rupture growth and the healing.

It should be noted that this healing behavior is most directly incorpor-
ated into descriptions of the relative slip velocity, rather than the
relative dislocation. This is particularly opportune considering the
usual far-field source representation, where the pulse shapes are deter-

mined from the integral,
a,(x,t) = [ du(E,e-T"(x,6))dr, @
- z - "~ ~

over the fault surface I of the relative slip velocity Aﬁ(s,:) using
the travel time, T®(x,), between the source point and the receiver,

to determine the correct delay.




6.

THE QUASI-DYNAMIC MODEL

Kinematic Description

During the rupture growth, the relative slip velocity at a point
£ from the hypocenter is given by

BI(E,t) = At/ (e2-[g|2/vD)?

t > IE [/v 2)
where v is the rupture velocity and A is a slip velocity which depends
on the dynamic stress drop, T e? and the rupture velocity approximately
as A = vre/u (Dahlen, 1974). Figure 1 shows the resulting slip velocity
as a function of time for a representative point on the fault. The
continuation of the elliptical slip distribution is shownl as a dotted
line. Note that for a rupture which grows steadily, the slip velocity
at any point of the rupture area does not decrease below the velocity
A.

In order both to stop the rupture growth and to approximate the
causal healing described in this introduction, we multiply this slip

distribution by the function

1 t <T 8
h(E,e) = (T (E)-0)/R T (E) <t < T, (§) @)
Q t > Th(_s.)

REPNUSUNS .



vwhere Ts(g) is the time of the onset of healing for the point & 'rh(§)

is the healing time (i.e., Aﬁ(g,rhcg)) = 0), and A = T,(§) - T_(§) is

the healing interval, during which the slip velocity decreases to zero.
For all the models used in this paper, the onset of healing,

T (§), 1is given by
Tg(8) = T, - B - |§.§ol/“ S

where 'ro is the time from the nucleation to the complete healing of the
rupture, a is the compressional wave velocity, and x, (the position of
the last point to heal on the fault plane) is a vector which determines
the direction and relative extent of the asymmetry of the final rupture
area. The healing function h(g,t) thus describes a smoothed (by h)
circular support function for the rupture which is imploding at the
compressional wave velocity. The interaction of this function with the
growing rupture produces a source with a finite rupture area which
heals into the interior of the fault as desired.

The final rupture area of these models is approximately elliptical,
with eccentricity e < .4, which may be varied by varying x,. In Figure
2, snapshots of the relative slip velocity of a strongly asymmetrical
version of the model are shown. The slip velocity has been smoothed
so that is may be readily plotted. The regions where the rupture is
healing are shown darkened. Note how this rupture is intermediate

between a circular rupture and a unilaterally propagating one.




Healing

During the healing interval, the slip velocity at § is given by

Mg, t) = At(Ty(§)-t) T (8) < t < T, (). (5)
RCe2-| g |2 /vzfi

For computational simplicity, the healing interval h is assumed to be
constant over the rupture. This description of healing does not in-
corporate any of the complex diffraction effects (i.e., inhomogeneous
vave effects) which generally occur as a result of a deceleration of
the crack tip (Madariaga, 1977; Achenbach, 1978) . However, the causal
initiation of healing which propagates into the interior of the rupture
area at the compressional wave velocity, is characteristic of both
in-plane and circularly symmetric numerical fracture models (Madariaga,
1976).

The assumption that the P-wave stopping phase initiates the healing
is a natural result of the frictional model we are using. While the
fault is in motion, the shear stress acting across the rupture surface
is the dynamic frictional stress. The self-similar solution of Kostrov
(1964) implies that motion will continue until information (carried by
the P-wave stopping phase) concerning the finiteness of the fault
reaches it. The delay between the stopping event and the arrival of
the stopping phase produces an overshoot in the distributiom of slip
on most of the rupture area; that is, at the arrival of the stopping
phase, the slip is generally greater than the static slip distribution

which would result from a stress drop equal to the dynamic stress drop.
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Because the shear stress remains at the dynamic frictional level during
healing, the slip cannot reverse direction. After the rupture has
healed, the shear stress across the fault surface re-adjusts so that
generally the static stress drop is greater than the dynamic stress
drop. In healing, the kinetic energy of the fault motions is mostly
dissipated in frictional heating, although some i{s radiated seismicly.
In stress release models where the dynamic frictional stress is zero,
the slip reverses slightly during healing, oscillating around the
static offset whose stress drop equals the dynamic stress drop. The
kinetic energy of the fault motion is radiated seismicly, damping the
oscillations (Burridge, personal communication).

In Figure 3, shapshots of the relative dislocation for the same
model as Figure 2 are shown with the healing regions again darkened.
The rupture area to the left of the healing region is healed. In the
topmost graph, the slip is at the final static offset. Note the slight
cusp to the right; this is exactly at X and results from the uniform
healing behavior for the whole rupture area: in Madariaga's (1976)
results, the last point to heal decelerated more rapidly than the rest

of the fault.

Stopping Behavior

The constant healing interval for the entire rupture, combined with

the constant rupture velocity, produces a perimeter regiom of width

A = h ()

=,
v




~ across which the particle velocity at the crack tip decreases contin-
uously to zero as described by eq. (5), but where the beginning of the
interval is given by IEI/V rather than T_(f). This interaction pro-
duces a reasonable approximation of a rupture which stops gradually.
Since h fs a free parameter, this allows us to model ruptures which
stop in an arbitrarily gradual or sudden fashion by varying AZ, thereby
obtaining body wave spectra which show spectral falloffs w ! with
2 < Yy <3 and the general two corner frequency emvelopes of the type
discussed by Boatwright (1978b). The possibility of modelling this
range of stopping behaviors represents a significant advance in source
modelling. As a motivation for this kinematic stopping behavior, note

that for this region the function h(§,t) can be written as

(T, (§)-€) = (T, (E)-|£]/v) (T, ()-v) @
1 B (T, &)-¢[/v)
F_ where we may identify the first term as an appropriate decrease of A

resulting from a decrease in the dynamic stress drop. The second term,
(T, (8) ‘t)/(Th(E)‘IEI/V)s contains the time dependence of the healing we
] have used for the interior rupture area.

As shown in the series of snmapshots in Figure 4, detailing the

change of the slip velocity on this fault perimeter, the interaction of

the rupture growth and healing produces a realistically gradual stopping
at the fault boundary. As a result, the slip distributions of these
models are generally more smooth than those of constant stress drop

models. This smoothness is evident in Figure 3, where the dislocation

at the healed edge of the rupture decreases gradually to zero.




Using the technique of Andrews (1974), we have calculated the
static stress drop for one of these models. The results are displayed
in Figure 5. The effect of the smoothed dislocation is to smooth the
stress drop, weakening the stress concentration at the perimeter of the
fault. The peaked behavior of the stress drop at X is a result of our
healing specifficatfon, as mentioned above. A variation of f over the
interior of the fault could be determined such that the static stress
drop was smooth at X, but this would have little effect on the radiated

pulse shapes.

ENERGY FLUX PULSE SHAPES

A gignificant feature of the "quasi-dynamic™ source models is that
the seismic energy radiated is consistent with the theoretical results
of Kostrov (1974) and Madariaga (1976) for general frictional models of
rupture, as described in the Introduction. This agreement allows us to
use both the energy flux pulse shapes and the time integrated energy
flux (the radiated energy per unit area) of the body wave arrivals as
modelling constraints. The energy flux across a surface at x, in a body
wave travelling with velocity c(:f), normally incident ‘to the surface,

is given by

e(x,t) = p(x)e(x)u(x,t) (8)

vhere p(x) is the density and u(x,t) is the ground displacement (Bullen,

1965, p. 127}. Thus, if the phase distortfon of the free surface is

corrected for, the time history of the square of the ground velocity
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represents the energy flux of the body wave arrival. These v2-plots
were first used by Hanks (1974) iIn an analysis of the Pacoima Dam re-
cording, and more recently, by Boatwright (1978a) in an analysis of a
multiply recorded aftershock of the 1975 Oroville, California earth-
quake. Because of their non-linear signal enhancement, vZ-plots pro-
vide generally coherent, noise-free pulse shapes, suppressing echoes and
low frequency contamination.

The vz—plots can provide seismologists with particularly useful
waveform constraints. In discussing vZ pulse shapes, we consider only
the undistorted (elastic whole-space] pulse shapes. As squaring the
ground velocity is a non-linear operation, any phase distortion must be
corrected in the ground velocity before squaring. The (undistorted)
far-field velocity pulse shapes from simple sources are made up of one
positive and one negative pulse with equal areas; therefore the re-
sulting v2-plots show two distinct pulses separated by an actual zero.
We will refer to the first pulse as the rupture phase, as it details
the growth of the rupture and refer to the second pulse as the healing
phase.

There are three distinct pulse measurements which may be obtained
from v2-plots. The first of these measurements, the width of the rup-
ture phase, provides an estimate of the pulse rise time (or the first
half-cycle of the velocity trace, ‘t;ﬁ) and bas been discussed in detail
by Boatwright (1979). This rise time, affected by directivity, can
readily be used to estimate the duration df the rupture growth in the
direction of the station at which the pulse ;ras observed. A second
measurament, the separation of the healing- and rupture-phase peaks,

provides a pulse duration estimate giving information about the geometry




of the rupture if the azimurhal distribution of the observed pulse

shapes is adequate. Finally, the relative amplitude of the two phases
establishes a useful constraint on the fault motions., In general, this
relative energy content varies substantially over the focal sphere.
This is a direct result of the difference in the particle velocity
behavior behind the crack tip and during healing. The enhanced com-
structive interference of the rupture pbase for body waves with phase
velocities on the fault surface which approach the rupture velocity
dominates the v2-plots of shear wave pulse shapes radiated along the
fault. In directions near the normal to the fault plane the healing
phase increases in amplitude and in these directions the relative ampli-
tude of the phases is very sensitive to the rupture velocity and the
rupture geometry. For the two events discussed in the second part of
this paper, this particular feature of the waveform, combined with an
approximate description of the rupture geometry, is used to estimate

the rupture velocity and is therefore a crucial aspect of the analysis.

MODELLING OF TWO SHUMAGIN ISLANDS EARTHQUAKES

On April 6, 1974, two moderate size (mb = 5.8, 6.0) earthquakes
occurred within a local network of short period seismograph statiomns
(run by Lamont-Doherty Geological Obsgervatory) in the Shumagin Islands,
Alagka. They were followed by 69 recorded aftershocks over the next two
weeks. Both main shocks triggered a strong motion accelerograph (SMAl)

at Sand Point, 50 km NNW of their epicenters. In Figure 6, we show a

map view of the epicentral area.




A thorough analysis of the sequence is presently in preparation
(House and Boatwright) which includes a full discussion of the after-
shock locations, the sequence b-value, tﬁe fault plane solution, the
far-field waveform analysis and the source modelling. We bave included
only the far-field waveform analysis and the source modelling in this
paper, as an example of the applicatfon of the quasi-dynamic sources

for energy flux modelling.

SMAl1 Waveform Analysis

The SMAl records from the 0153 and 0356 events were photographically
enlarged, digitized and instrument corrected using the technique dis-
cussed by Boatwright (1978b). Since the Sand Point station was at an
SH node, the vertical and horizontal components were combined to obtain

the incident SV pulse shape, using the free surface transformationm,

usv(t) = cos 2§ u_(t) + sin } uz(t). @

2cos j

Here j (= 33°) is the angle of incidence of the S-wave, ux(t) is the
bhorizontal component (positive away from the source) and uz('r) is the
vertical component (positive downward). This (real) transformation was
derived from Chapter 5, problem 5.6, of Ak{f and Richards (1970). Because
the transformation is essentially a rotation into the particle motiom of
the incident SV wave, it suppresses the evanscent SP arrival expected at

this range (Anderson, 1976] by a factor of 8.




The resulting SV acceleration traces for both events are shown

in Figures 7 and 8, along with their respective velocity and v2 traces.
The integration to velocity was performed using a parabolic baseline
technique detailed in Perez et al. (1979). Both accelerograms show a
significant 12 Hz site response which is substantially reduced in the
integration to velocity.

The v2-plots of the SV phases at Sand Point are remarkably sim-
ilar in shape and amplitude, although the 0153 pulse shape is noticably
more impulsive. This similarity indicates that the events probably
share nearly the same rupture geometry, as they have the same focal
mechanism. The large relative amplitude of the healing phase suggests
either that the rupture propagated towards the Sand Point station
(downdip) or that the rupture velocity was slow, about .6 of the shear
wvave velocity, if the rupture was approximately circular. These two
possibilities are considered in the discussion of the WWSSN short period
data. The final model v2-plots are shown along with the data as dashed
lines.

In Figures 9 and 10, we show the displacement spectra for the two
events, as well as the final model spectra (dashed lines). The data
has been corrected for attenuation assuming a shear wave Q of 300. The
site amplification at 10-15 Hz shows up very strongly in these spectra.
The corner frequencies, marked by dots, were estimated assuming this
ampliffication to be spurious. The corrected velocity spectra were
integrated to obtain the integral of the squared ground velocity, which
we will call ISV'

In order to estimate the source dimension, we have used three

different measurements of the SMAl pulse shapes and spectra; f.e., the




corner frequency, the characteristic frequency and the pulse rise time.
The necessary spectral and pulse parameters are listed in Table 1.

Following Boatwright (1979), the characteristic frequency, Ng» is

defined as |
1/3
e " (is_V_) o) ‘
u?

sv ' : ”
where E“ is the low frequency asymptote. This spectral masurenené

provides an estimate of the source dimension (radius = a) through the

relation, 1

et

K, =an 11)
8 ;B

where v is the rupture velocity and Kg = 1.9 for this takeoff angle. |
The pulse rise time, 1:;5, defined here to be the measurable width of the

first pulse of the vZ-plot (the rupture phase), may also be used to

estimate the source dimension, from the empirical relation (Boatwright,

1979),

T, = (13-127) s . (12)
16 v

Here, { = v sin 6 is the ratio of the rupture velocity to be the phase
c

velocity of the ray along the fault surface. The results from these three

source dimension estimates are shown in Table 2. If we assume the ratio
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of the rupture velocity to the shear wave velocity to be bounded as

.55 < v < .8, then we obtain the first order estimates of 1.0 < a < 1.4
8

km for the Q153 event and 1.4 < a < 2.0 km for the 0356 event.

WHSSN Waveform Analysis

Before fitting for a particular rupture model, it is necessary to
investigate the rupture geometry of the 0356 event. We have analysed
9 short-period P-wave arrivals from 6 WWSSN stations. The steps of this
analysis are shown in Figure 11, using the P-wave recorded at GDH as
an example. The lowest trace is the seismogram as digitized, and the
trace above it, the seismogram after filtering with a zero-phase band-
pass filter. This filter is made up from a triangle smoothing operator
and a second order Butterworth high pass filter (cormer at .3 Hz) rum
forwards and backwards on the trace. The third trace is the ground
velocity, obtained by a recursive deconvolution scheme derived from a
bilinear approximation (Kanasewich, 1975, p. 194) to the coupled
galvanometer-seismometer response. The uppermost trace is the square of
the ground velocity. It is the variation of these v2-plots which we will
use to determine the rupture geometry of the event.

In Figure 12, we show how the pulse shapes vary over the focal
sphere. The P, pP, and sP takeoff directiomns are plotted relative to
the fault plane obtained by House and Boatwright, so that the fault
plane is the horizontal plane of the gtereomet. To account for the
pulse shape differences Between the P and S body waves, the phase leaving

ag P-waveg have Geen corrected to the appropriate takeoff direction
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(open circles) for S-waves having the same phase velocity along the
fault surface, which requires the far-field pulse shapes to be identi-

cal. From Kostrov (1970), this corrected takeoff angle is

-1
Os = gin (g sin Op) . (13)

where 6 8 and ea are measured from the normal to the fault plane. Note
that almost all the corrected takeoff angles lie between 20° and 30°.

The line across the stereonet marks the strike of the Benioff zome.

In order to evaluate the variation of these vz-plor.s, in Figure 13
we show the synthetic variation of the v2-plots over our model range.
For these synthetics, we have used Both circular and slightly asymmet-

rical versions of the quasi-dynamic models, fixing the ratio a .
v

In the left-hand colum of Figure 13, we show the variation of
the v2 pulse shape for different rupture velocities where the takeoff
angle of the ray is at 30° from the normal to the fault plane. These
same synthetics may also be used to describe the variation of the v2
pulse shapes for different takeoff angles. For a circular rupture with
velocity v = .68, the upper and lower figures approximate the v2 pulse
shapes at 35° and 25°, respectively, from the fault normal. The con=-
trasting interpretations of these synthetics results from the approxi-

mate similarity of pulse shapes having similar values of v sin 6, for
c

similar rupture models (Boatwright, 1979).
In the right<hand column, we detail the pulse shape varfations for
different directions of asymmetrical rupture growth relative to the

observer. In these synthetfics, the takeoff angle is 30° from the fault

L-———-—-—-—-.m V — " e . ™
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normal and the rupture velocity is v = .68. The asymmetrical models
have about an 102 unilateral rupture. If Ef(ﬂ is the distance from
the hypocenter to the perimeter of the fault of the ¢ direction, the

percent unilateral rupture is given as

100 + max Ef(*t)'ef(tbﬂ) " a4)
) -

Eg ()4, (4+1)

For an elliptical fault whose hypocenter is at one of the foci, the
percent unilateral rupture is simply 100 - e, where e is lt:he eccentri-
city.

In Figure 13, much of the more striking variations of the vZ-plots
appears to result from differences in the crustal structure beneath the
stations used. The Sand Point vZ pulse shape has been plotted with the
same time scale, in order to show the relative attenuation present in
the short period WWSSN data. In particular, it is necessary to point
out the broadening (perhaps due to attenuation) of the HKC pulse shapes,
with respect to the pulse shapes at nearly the same takeoff direction.
Also the pulses at GDH and AAM appear to have a crustal reverberation
which is interfering destructively with the healing phase of the v2
pulse shape. This interference may be seen in the plot of the WWSSN
analysis in Figure 1l as well.

The slight difference (in relative amplitude and timing) of the
depth phase (updip) pulse shapesg relative to the downdip pulse shapes
suggests that the rupture had a slight downdip component of unilateral

rupture (about 5Z) and a rupture velocity of about v = .68. Because

|
L——“—— it - . - e
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of the narrow band of the short period WWSSN instruments and the
unknown crustal structure beneath the stations whose P-waves were
analysed, we can use these results only qualitatively. However, it is
important to note that nearly all of the vZ-plots fall within the model
range spanned by Figure 13, from which we have determined the variance
of our source parameter estimates. As we have already estimated the

ratio a for these events, specifying an approximate rupture velocity
v

and rupture geometry thus determines our final models.

Final Source Models

For the final source modelling we have used synthetics generated
by two circular versions of the quasi-dynamic models. Since the dis-
placement spectra from these events falloff faster than w.z, ve presume
that the rupture stopped gradually rather than abruptly (Madariaga,
1978), and this gradual stopping is incorporated into the models.

Since both events were fit with circular models, the rupture
velocities of the two models are slightly different: v = .68 for the
0153 event and v = ,558 for the 0356 event; similar results would have
been obtained if we had fixed the rupture velocity and used asymmetrical
rupture geometries. Using a slightly asymmetrical model and a rupture
velocity of .66 for the 0356 event, lowers the stress estimates by
: 20%. |

The source parameters obtained from our model fits are listed in

Table 3. We have calculated the moment and radiated seismic energy

using the formulae,




21.
M) = dme 6 ) (5 o B@ T RE) i 1)
P>V (8,0
2
E, = o(x)B(x) (R(;f,go) ) L (16)
7V (6,4)

e (8)
8

where p(ao), p(x) = 3.4, 2,5 gm/cm3 and B(Eo), B(x) = 4.4, 2.5 km/sec
are the densities and shear wave velocities at the source and receiver,
respectively, R(x,Eo) = 52 km is the geometrical spreading factor,

calculated following Newman (1973) and Fsv(9,¢) = ,46 is the radiation
pattern coefficient. eBC30°) =.2 is the fractional emergy flux, which

relates the time integrated energy flux at a particular takeoff angle
to the total radiated seismic energy (Boatwright, 1979).

The dynamic stress drop also may be calculated directly from this
modelling. Since the quasi-dynamic models incorporate the self-similar

slip distribution described by Rostrov (1964), Burridge and Willis (1969)

and others, the slip distribution is scaled by the initial relative slip
velocity, A. Thus, any model fit may also be used to determine the

dynamic stress drop, via the formula (Boatwright, 1979),

FELLIICR S TCRRE YO TS LIRS ¢ MR N+ @

av? F€a,0)  Q(x,t)

where < v..x(x,t) > is obtained by scaling the data, u(x,t) to the
ﬁ(x,C)
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= .38 cm/sec and

synthetics, ﬁ(:f,t). The model fits give G(:.:‘,t)
2

.34 cm/sec for the 0153 and 0356 events, respectively.

The regults compiled in Table 3 show two systematic anomalies.
For both events, the dynamic stress drop is greater than the average
static stress drop, while the apparent stress is substantially lower
than re/lo, which is the expected value for frictional ruptures with
v = .68 (Madariaga, 1976). However, the gradual stopping of these
events may explain both anomalies. If the rupture nucleated in a loc-
alized region of high stress, and grew beyond this region, the average
stress drop over the rupture area would be lower than the initial stress

drop, while the radiated emergy would be low due to the gradual stopping

in the less loaded region. Note also the consistent differences in the

stress estimates for the two events, that the larger 0356 event has a

stress drop = 70%Z of the 0153 event.

CONCLUSIONS

The first goal of this modelling effort is the determination of
the rupture velocity of these two events. The estimate of rupture velo-
city is critical both for the modelling, because of the trade-off in the
directivity between rupture velocity and rupture geometry, and for the
estimates of stress releagse (Ag and re)_, because they depend strongly onm
the estimate (or a priori assumption] of the rupture velocity.

To fllustrate the second point, note tRat if the rupture velocities
were estimated to be .98, then Goth the statfc and dynamic stress drop

estimates would be approximately 30Z of the values listed in Table 3.
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This non-linear dependence obviously requires a strong estimate of the
rupture velocity in order to obtain reliable estimates of stress re-
lease.

In Figure 14, we have plotted the locations of 29 aftershocks of
the two events, projected onto the fault plane. Note the fit of the
estimated rupture perimeter of the 0153 event to its aftershock cluster.
The aftershock cluster of the 0356 event is more diffuse, perhaps be-
cauge of its lower stress drop. While these aftershock locations cannot
be used to confirm our estimates of the source dimension (owing to their
relative uncertainty and the small dimensions of the earthquakes), they
indicate that the two events represent spatially distinct ruptures (see
also Figure 6). This interpretation is reinforced by the systematic
differences in stress released by the two events. Because of the
similarity of the fault plane solutions and the SMAl waveforms, the
uncertainty of the ratio of any estimate of stress release is approxi-
mately 10Z, and therefore these differences are significant.

These arguments lead naturally to the conclusion that the two
main shocks represeant the failure of two distinct asperities, or stress
concentrations. Thus, the extremely high stress drops are not directly
indicative of a similarly high average stress over the region although
these events may be presumed to load the unruptured part of the fault
plane. The stress concentrations are inferred to be the result of
patches of high strength which bave not yielded with the rest of the
fault plane. Andrews (1975) has called these stress concentrations
ant{-dfslocations, as they represent distriButions of negative slip
relative to the rest of the fault system. The gradual stopping charac-

-3

ter of Goth events (Inferred from the w = falloff of their displacement
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spectra and incorporated into the final source models) also supports

this interpretation, as this stopping behavior is to be expected of a
rupture which grows beyond the localized stress concentration where it
nucleated. This is equivalent to the "seismic gap" stopping mechanisn
discussed by Husseini et al. (1976). Using their formula for fracture

energy,

Yo = arez . (18)_
2T

vhere a s the fault radius, we obtain vy = 3 x 1010 ergs/cm? for the
two events. This extremely high fracture emergy implies that the fault

zone for these events had a similarly high fracture strength, and fur-

ther corroborates the asperity interpretationm.

L
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TABLE 1 — Spectral Parameters

0153 0356
;év .13 £ .04 cm/sec .25 * .07 cm/sec E
;S 2.2 * .6 cm?/sec 3.1 t .8 cm?/sec
Vg 1.2 Hz .8 Hz é
g 5.1 Hz 3.5 Hz

r% .24 sec .37 sec
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TABLE 2 — Rupture Duration (- g)
v

Method 0153 0356
corner frequency .41 £ .1 sec .62 =+ .2 sec
characteristic frequency .37 £ .1 sec .53 £ .15 sec
rise time .39 + .08 sec .60 £ .1 sec

"

average .39 £ .05 sec .59 .1 sec
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TABLE 3 — Source Parameters

0153 event

radius - a = 1.2 kn
moment - M_ = 3.5 £ .8 x 102% dyne-cm
static stress drop - Aad = 89Q bars range 600-1100 bars

dynamic stress drop - T ™ 104Q £ 350 bars
3.0 x 1020 dyne-cm

H

radiated energy =~ Es = 8,7

apparent stress - T_ = 160 +* 60 bars

0356 event

radius - a = 1.65 km

moment - M_ = 6.7 + 1.5 x 102% dyne-cm

static stress drop - Ac = 650 bars range 350-8Q0 bars
dynamic stress drop - .t, = 78Q + 250 bars

radiated energy - E_ = 12.4 £ 4.0 x 1020 dyne-cm

apparent stress - 7 = 120 £ 50 bars




Figure 1:

Figure 2:

Figure 3:

FIGURE CAPTIONS

Generalized plot of the quasi-dynamic slip velocity.

Tr is the rupture arrival time, '1‘s the arrival time of
the first stopping phase and '1'h the time of healing.
The slip velocity scales with the velocity A, which de-
pends on the rupture velocity and dynamic stress drop

approximately as A s v T, -

o

Snapshots of the slip velocity distribution of a quasi-
dynamic madel, with time increasing from the bottom. The
slip is healing in the darkened regions. The slip velocity
has been smoothed (by dx) so that it may be easily plotted.
Note how the character of the rupture changes from a cir-

cular rupture to a unilateral propagation.

Snapshots of the slip distribution of the model shown in

Figure 2. The ship has healed to the left of the darkened
regions. In the top figure, the static slip distribution
is shown; note the smoothed slip at the rupture perimeter,

and the cusp at X, -




Figure 4:

Figure 5:

Snapshots of the slip velocity distribution at one edge
of the model, detailing the stopping behavior. The
healing regions have not been darkened. The stopping
phase can be seen as a discontinuity in slope at times

t= .16 and t = ,18. By t = .22 the perimenter has healed

completely.

Distribution of static stress drop and final slip for ome
of the models. Note how the smoothed distribution of
slip naturally weakens the stress concentration at the
perimeter of the rupture. The sharp stress node is an

unphysical artifact of the healing descriptiom.

Map of the Aleutian arc near the Shumagin Islands, showing
the epicentral area of the events to be discussed and the
stations used to locate the events and their aftershocks.
The inset shows the epicenters of the two events along
with the 29 located aftershocks. Note the clear grouping

of the aftershocks into two distinct clusters.

SV acceleration, velocity and v2 pulse shapes for the 0153
event. The dashed line in the v2-plot is the synthetic

pulse shape from the final model.

SV acceleration, velocity and v2 pulse shape for the 0356
event. The dashed line in the v2-plot is the synthetic

pulse shape from the final model,
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Figure 9: Displacement amplitude spectrum for the 0153 event. The
dot marks the measured cornmer frequency. The spectrum
has been corrected for attenuation. The spectral ampli-

. fication at 10-15 Hz is a site response. The dashed i

line is the synthetic spectrum.

Figure 10: Displacement amplitude spectrum for the 0356 event, See

expanation for Figure 9.

Figure 11: Detail of short-period WWSSN analysis. The lowermost
trace is the seismogram as digitized with the bandpassed

seismogram above it. The next traces are the deconvolved

velocity and finally the v2-plot.

Figure 12: Variation of the short-period WWSSN v2 pulse shapes from
the 0356 event over the focal sphere. The takeoff angles
of the phases have been rotated so that the fault plame
is the plane of the stereonet. The phases which took
off as P-waves are corrected (solid lines) to the equi-
valent takeoff angles for S-waves. The two arcs are at
20° and 30° from the fault normal. The Sand Point SMAl

v2-plot is plotted at the same time scale for reference.

E Figure 13. The variation of the v?2 pulse shapes over the model range.
The left-hand column shows the variation of the pulse
shapes with the variation of rupture velocity or takeoff

| angle (see te#tl, while the right-hand column shows the

| variation resulting from a slightly asymmetrical rupture

geometry.
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Figure 14

Plot of the aftershock locations projected onto the

fault plane. The dashed circles are the rupture areas
determined from the waveform modelling. The uppermost
(smaller) event is the 0153 main shock, while the larger
event is the 0356 main shock. The largest intervening
aftershock an = 4,7) occurred at 0227 and is just to the

left of the 0153 rupture zone.
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MODEL VARIATION OF SHEAR WAVE V2 PULSE SHAPES (GB = 30°%)

CIRCULAR MODELS ASYMMETRICAL MODELS
(v = .68)
- ; 4 A 4
v=_.,78 rupture away from observer
v = .68 rupture normal to observer
. 1 !
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v =58 rupture towards observer
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INVESTIGATION OF TWO HIGH STRESS-DROP EARTHQUAKES

IN THE SHUMAGIN SEISMIC GAP, ALASKA!

Leigh House and John Boatwright

Lamont-Doherty Geological Observatorny and
Depantment of Geological Sciences of Columbia Univernsity
Palisades, New Yonk 10964

ABSTRACT

Two moderate size (mb = 5.8, 6.0) earthquakes occurred within a local net-
work of short-period seismograph stations in the Shumagin Islands, Alaska, on
April 6, 1974. They were followed by 69 aftershocks recorded over the next two
weeks. Both mainshocks triggered a strong-motion accelerograph (SMA) at Sand
Point, 50 km NNW of their epicenters.

High quality locations obtained from local network arrivals for the main-
shocks and 29 aftershocks plot at depths between 35 km and 45 km and define a
plane dipping about 30° to the NW. A nearly pure-thrust focal mechanism for
the larger (mb = 6.0) earthquake was obtained from long-period data. The fault
plane dips 30° in the direction N 16°W. This sequence was located along the
dipping seismic zone beneath the eastern Aleutians and was presumably related
to underthrusting of the Pacific plate beneath North America.

We obtained estimates of the source parameters of these earthquakes from
analysis of SMA data and WWSSN short period data. WWSSN data indicates that
the earthquakes ruptured a nearly circular zone. Modelling of the SMA records

with a quasi-dynamic model [Boatwright, 1979] provides the following source

parameter estimates for the m - 5.8 and 6.0 earthquakes respectively: moments,

Mo, 3.6 and 6.6, x 102" dyne-cm and stress drops: 650 and 540 bars. A high

lLamont-Doherty Geological Observatory Contribution Number 0000.
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frequency spectral fall-off of w™? suggests that the ruptures stopped gradually.
The Shumagin Islands region is believed to have a high potential for a
future large earthquake [Kelleher, 1970; Sykes, 1971; Kelleher et al., 1973].
The location of this earthquake sequence at the deepest part of the rupture
zone of the 1938 earthquake (Ms = 8.7) (major earthquake ruptures of ten ini-
tiate at depth and propagate updip) and the high stress-drops of the shocks in

1974 may indicate considerable accumulation of stress prior to a major earth-

quake in the Shumagin Islands region.

INTRODUCTION

Two moderate size (mb = 5.8, 6.0) earthquakes and their aftershocks, which
occurred within the Shumagin Islands Seismic Network, Alaska, have produced a
unique data set for a detailed study of the tectonics at depth in an area which
has been identified as a seismic gap. In order to fully describe this earth-
quake sequence, this study integrates the locations and magnitudes from the
seismic network, the strong motion accelerograph recordings of both events, and
short-period WWSSN data from the larger event.

The April, 1974 sequence began at 0153 hours on April 6, 1974, with a mod-
erate size (mb = 5.8) mainshock. This was immediatély followed by aftershocks,
including one of magnitude 4.3 at 0227 hours. A second, and larger (mb = 6.0),

mainshock occurred at 0356 hours. Over-the next two weeks there were nearly 70

aftershocks, three of which had body wave magnitudes greater than 4. Considering

only the teleseismic locations, the sequence resembles a swarm as the mainshocks
are so close in both location and magnitude. Using the local network locatioms,
however, it is clear that there were two distinct mainshocks which had separate

rupture areas. The range of hypocentral depths for these events is between 37

and 43 km.




The Lamont-Doherty Geological Observatory has operated a network of vertical
short-period, radio-telemetered stations in the Shumagin Islands region of Alaska
since July 1973. As originally installed, the network consisted of high-remote
stations which telemetered their data to a central recording site at Sand Point
(SDP, see Figure 1). Severe environmental factors resulted in numerous station
outages over the winter season. By April, 1974, when the sequence occurred, only
four of the remote stations were operating.

Both mainshocks triggered a strong motion accelerograph (SMA-1) located at
Sand Point. These recordings, complemented by a qualitative analysis of the
rupture geometry using WWSSN short-period data, are modelled using the techniques
and models discussed by Boatwright [1979], which focus on the determination of
the rupture velocity, and which provide more reliable estimates of stress re-
lease.

Archambeau [1978] made a survey of earthquakes along the Aleutian arc using
m to Ms ratios and obtained high stress drops for these two mainshocks (Ao =
500 bars). Our study confirms his identification of these events as high-stress
drop earthquakes, and in addition, provides considerable insight into the charac-

ter of the deformation at this depth in the Benioff zone.

Analysis of Shumagin Network Data

During the two weeks following the mainshocks of April 6, 1974, more than
70 aftershocks occurred which were large enough to be recorded by the station at
Squaw Harbor (SQH, see Figure 1). Of these, 4 were large enough (mb > 4.0) to
be recorded teleseismically. Seismic stations which were operating at the time
of these earthquakes were: SDP, PVV, SQH, SGB, and CNB (see Figure 1). CNB was
working only intermittantly and recorded only about 1/2 of the sequence. Unfor-

tunately, the station nearest the sequence, NGI, did not record any of the sequence.




Our earthquake location procedure consisted of reading arrival times from
magnetic tape playbacks (with a precision of 0.2s) and using a variation of the
HYPO 71 program [Lee and Lahr, 1972] to obtain hypocentral coordinates from the
arrival times. We had no difficulty making P arrival time picks, as the P
phase was generally quite impulsive. Since only vertical seismometers are in-
stalled at the remote stations, making reliable picks for S arrivals was quite
difficult. In general, we used only S arrival times from the SDP stationm,
which has 2 horizontal short period seismometers, in addition to a vertical.

In order to reduce the magnitude of the overall station residuals, we
applied station corrections to arrival times. We averaged the station resi-
duals from the two main shocks and the first large aftershock (April 6, 0227
hrs, n = 4.3), and applied the corrections to arrivals from the whole suite
of events. The largest residual, -0.1ls, was at station SQH; the rest were
+ 0.05s or less.

By obtaining earthquake locations both with and without arrival times from
CNB, we determined that, although there is no significant bias of locatioms
which don't use CNB arrival times as compared with those which do, there is an
increase in scatter of the locations which don't use CNB arrival times recorded
at CNB. This restriction reduced the number of aftershocks we located to 27.
We feel that these locations are the most reliable of those from the whole se-
quence and estimate hypocentral locﬁtion errors to be less than 5 km in an
absolute sense, and in a relative sense, less than 2 km for our "A" quality
solutions.

Locations of the April 6, 1974 mainshocks and well located aftershocks are
plotted in map view in Figure 1. T;; open circles within the box are network

locations of the two mainshocks. The PDE (teleseismic) location for these events

is plotted as the open circle about 20 km to the NNW of their network locations.




Network locations for the whole sequence are plotted in the inset. Main shock
locations are circled; the first, at 0153 hours on April 6, is trenchward of
the second, which occurred two hours later, at 0356. Note the separation of
aftershocks into two adjacent, but distinct groups.

" The location of the cross section in Figure 2 is indicated in Figure 1
by the line which terminates just SE of the Aleutian Trench. The cross section
extends slightly beyond the northern edge of Figure 1.

Four years of Shumagin Seismic Network data are plotted in cross section
views in Figure 2. This figure illustrates the well-defined 10 km thin Benioff
zone which exists within the central portion of the network. The April 6 se-
quence occurred within the area of the box, at a depth of 40 km. Davies and
House [1979] noted that if the seismicity below about 40 km occurs near the
upper surface of the descending slab, then there must be a bend in the slaﬁ at
about 40 km. This is necessary because the seismic zone below 40 km dips at
about 30°, whereas, between the trench and 40 km depth, the slab dip is about
15°. Thus, the April 6 sequence occurred very near this bend in the slab.

The inset in Figure 2 is an enlarged cross section of the area of the April 6,
1974 sequence. The first main shock, at 0153 hours, is shallower, and trench-
ward of, the 2nd main shock. Dashed lines represent the rupture dimensions as
estimated from the source modelling. The rupture zones are plotted with a dip
of 30°, which is the clip of the fault planes we infer for these events. Sym
bol size is scaled to magnitude, the largest event is the second mainshock (mb =
6.0), the smallest event plotted has a magnitude of about 1.5. Symbol £illing
indicates quality of the location. Filled symbols are used for the best quality
locations ("A" quality), 1/2 filled for the next best ("B" quality) and open

symbols for worst quality ("C"). Relative hypocentral errors are about 1.5 km




for the "A" quality locations, 2 km for "B" quality and 3.5 km for "C" quality.
Errors in "A" quality locations are about the same magnitude as the rupture
radius of the first mainshock (1.3 km), those for "B" quality about the same
magnitude as the rupture radius of the second mainshock (1.8 km).

Figure 3 is an inclined cross section view of the April, 1974 sequence.
The projection plane is oriented parallel to the fault planes of the mainshocks,
and the "view" of this figure is upwards at the fault plane. In this figure
the first main shock (0153 hours) is above the second (0356 hours). The dashed
circles represent the rupture areas of the two mainshocks as inferred from the
SMA data. Symbol size and filling represent magnitude and quality of the
solutions as in the previous figure. Note that the aftershocks cluster about
the two main shocks, and, ir general, are indicative of two distinct rupture
areas. There is, however, some scatter, which is probably partly the result
of location errors, but which may also suggest that deformation during this
sequence extended beyond the immediate rupture zones of the mainshocks. The
first large aftershock (mb = 4.3) occurred at 0227 hours, on April 6 (just
1/2 hour after the first mainshock). It is plotted as the large, filled sym-
bol to the left of, and slightly below the first mainshock, as shown in Figure 3.
The second large aftershock (mb = 4,1) occurred at 0509 hours on April 6, and
plots as the solid square to the left of, and slightly below, the 2nd mainshock.
Thus, the focations of these larger aftershocks also suggests that deformation
during the sequence extended beyond the immediate mainshock rupture areas. The
scatter in aftershocks plotted in the inset of Figure 2 is consistent with this

concept.

Focal Mechanism of the Main Shocks

We obtained the focal mechanism of the second mainshock (mb = 6.0), shown




in Figure 4, primarily from long period arrivals at WWSSN stations. Both S wave
polarizations and P wave first motions were used. There is only one inconsis-
tancy in the first motions, and that is a less reliable pick. This mechanism

is consistent with the local network short period first motions, which are the
square symbols in Figure 4.

Since error in determination of the mechanism would produce error in the
source parameter estimates (see below), we wanted to extract the maximum constraint
possible from the data and quantify error in the focal mechanism. We selected
S wave polarizations from 9 stations which had clear S arrivals, and used the
S arrival from the SDP SMA, as well, and obtained a mechanism which produced a
minimum S wave polarization residual. We also used this information to obtain 1-.
standard deviation error estimates. Focal parameters and error limits are: strike,
254° + 15°, dip 30° + 5°, rake (of slip vector) 90° + 15°. These errors are indi-
cated on Figure 4, as are the associated errors in the T and P axes. First motion
and S wave polarization data are fewer, but identical, for the first mainshock
(mb = 5.8).

Since the network located seismic zone, and the general distribution of after-
shocks (see Figure 2) are very nearly parallel to the NE-SW striking, 30° dipping
nodal plane, we prefer this to be the fault plane of these events. The SMA wave
forms at SDP are also consistent with this choice of fault plane. Thus, these
earthquakes were shallow-angle underthrusts of Pacific lithosphere beneath North
America. Shallow angle underthrusting, with mechanisms similar to this one has
been observed along the Aleutians, by investigators such as Stauder [1968] and
Bollinger and Stauder [1966]. Since their fault planes are parallel to the
Benioff zone, as shown by the network locations, below 40 km, it appears that
the Pacific plate has already made the bend to a steeper dipping geometry by the

time it has reached the 40 km depth of these earthquakes.




SMA-1 Waveform Analysis

The SMA-1 records from the 0153 and 0356 events were photographically en-
larged, digitized and instrument corrected using the techniques discussed in
Boatwright (1978). Since the Sand Point station was at an SH mode, the ver-
tical and horizontal components were combined to obtain the incident SV pulse

shape, using the free surface transformation,

u () = S22y () 4 i} u, (6). 1)

2 cosj x
Here j is the angle of incidence of the s-wave, ux(t) is the horizontal compo-
nent (positive away from the source) and.uz (t) is the vertical component (posi-
fi;; downward). This (real) transformation was derived from Chapter 5, problem
5.6, of Aki and Richards (1979). The resulting SV acceleration traces for both
events are shown in Figures 6 and 7, along with their respective velocity and
v2 traces. The integration to velocity was performed uSing a parabolic base-
line technique detailed in Perez, Husid and Espinosa‘(l979). Both accelerograms

show a significant 12 hz site response which is substantially reduced in the

vintegration to velocity.

Tﬁe vz-plots detail the energy flux of the body wave arrival. Their non-
linear signal enhancement make them a strong tool for seismic source studies.
The vz-plots of the sv phases at Sand Point are remarkably similar in shape
and amplitude, although the 0153 pulse shape is noticably more impulsive. This
similarity indicates that the events probably share nearly the same rupture
geometry as they have same focal mechanism. The large relative amplitude of
the healing phase suggests either that the rupture propagated towards the Sand
Point station (downdip) or that the rupture velocity was slow, about .6 of the
shear wave velocity, if the rupture was approximately circular (see Boatwright,

1979). These two possibilities are considered in the discussion of the WWNSS .




short period data. The final model vz-plots are shown along with the data as
dashed lines.

In Figures 8 and 9, we show the displacement spectra for the two events,
as well as the final model spectra (dashed lines). The data has been correc-
ted for attenuation assuming a shear wave Q of 300. The site amplification
at 10-15 hz shows up very strongly in these spectra. The corner frequencies,
marked by dots, were estimated assuming this amplification to be spurious.
The corrected velocity spectra were integrated to obtain the integral of the
squared ground velocity (say IB)'

The spectral and pulse shape parameters for the two events necessary for
the estimation of the rupture dimensions are compiled in Tﬁble 1. Following
Boatwright. (1978a), the characteristic frequency, Mg is defined as

(ng e )
g | T
-B
where u, is the low frequency asymptote. This spectral measurement provides

8 _
an estimate of the source dimension (radius = a) through the relationm,

“8 '(%)"a G

where v is the rupture velocity and k , = 69 for this takeoff angle. The rise

8
time, t%, to be the measurable width of the first pulse of the v2-plot
(the rupthre phase), may also be used to estimate the source dimension, from the

empirical relation (Boatwright, 1979),
- (13-12¢) /a
¥ 16 v/ (4)
Here ¢ -'§ sin 6 1is the ratio of the rupture velocity to the phase velocity of

the ray along the fault surface. The results from these three source dimension

estimates are shown in Table 2. If we assume the ratio of the rupture velocity,




to the shear velocity to be bounded as .55 < ¥-< .8, then we obtain the first
order estimates of 1.0 < a < 1.4 km for the 0153 event and 1.4 < a < 2.0 for

the 0356 event.

WWNSS Waveform Analysis

Before fitting for a particular rupture model, it is necessary to inves-
tigate the rupture geometry of the 0356 event. We have analyzed 9 short period
P-wave arrivals from 6 WWNSS stations. The steps of this analysis are shown
in Figure w, using the P-wave recorded at GDH as an example. The lowest trace
is the seismogram as digitized, and the trace above it, the seismogram after
filtering with a zero-phase bandpass filter. This filter is made up from a tri-
angle smoothing operator and a second order Butterworth high pass filter (corner
at .3 hz) run forwards and backwards on the trace. The third trace is the

ground velocity, obtained by a recursive deconvolution scheme derived from a

bilinear approximation to the coupled galvanometer-seismometer response. The
uppermost trace is the square of the ground velocity. It is these vz-plots i
which we will use to constrain the rupture geometry of the event.

In Figure 11 we show the variation of the v2~plots over the focal sphere.
The P, pP and sP takeoff angles are shown relative to the fault plane, rotated

into the plane of the.figure, together with their respective vzpulse shapes.

To account for the pulse shape differences between the P and S body waves, the
phases leaving as P-waves have been corrected to the appropriate take-off angle
(open circles) for an S-wave having the same phase velocity along the fault
surface, which requires the far-field pulse shapes to be identical. From

Kostrov (1970), this corrected take-off angle is

-1f3
0s = gin (a sinep) (5)

where eB and ec are measured from the normal to the fault plane. Note that
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almost all the corrected takeoff angles lie between 20° and 30°. The line across
the stereonet marks the strike of the Benioff zone.

In order to evaluate the variation of these vz-plots. in Figure 12 we show
the synthetic variations of the vz-plots over our model range. For these syn-
thetics, we have used both circular and slightly asymmetrical versions of the
quasi-dynamic models discussed in Boatwright (1979), fixing the ratio s-.

In the left-hand column of Figure 12, we show the variation of the v2 pulse
shape for different rupture velocities where the takeoff angle of the ray is
at 30° from the normal to the fault plane. These same synthetics may also be
used to describe the variation of the v2 pulse shapes for different takeoff
angles. For a circular rupture with rupture velocity v =.6 g? the upper and
lower figures approximate the v2 pulse shapes at 37° and 24°, respectively,
from the fault normal. The contrasting interpretations of these synthetics re-
sult from the approximate similarity of pulse shapes having similar values of
%-sin 0, for similar rupture models.

In the right hand column, we detail the pulse shape variations for differ-
ent directions of asymmetrical rupture growth relative to the observer. 1In
these synthetics, the takeoff angle is 30° from the fault normal and the rupture

velocity is v = .6 The asymmetrical models have about an 11X unilateral rup-

B L]

ture: 1if Ef (¢) is the distance from the hypocenter to the perimeter of the

fault in the ¢ direction, the percent unilateral rupture is given as

Ep() < Ep(4 + 1) 6)
- 4+

£ (9) - £54 ")

100 max

Note how the asymmetrical models produce a strong variation of the peak sepa-
ration in the v2 pulse shapes over the focal sphere, as well as varying the rela-

tive amplitude of the peaks. This difference will also help resolve the trade-

s
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off between rupture velocity and rupture geometry.

In Figure 11, much of the more striking variations of the vz-plots appears
to result from differences in the crustal structure beneath the stations used.
The Sand Point v2 pulse shape has been plotted with the same time scale, in
order to show the relative attenuation present in the short period WWNSS data.
In particular, it is necessary to point out the broadening (perhaps due to
attenuation) of the HKC pulse shapes, with respect to the pulse shapes at nearly
the same takeoff angles. Also the pulses at GDH and AAM appear to have a crustal
reverberation which is interfering destructively with the healing phase of the
v2 pulse shape. This interference may be seen in the plots of the WWNSS analy-
sis in Figure 10 as well.

The slight differences (in relative amplitude and timing) of the depth
phase (updip) pulse shapes relative to the downdip pulse shapes suggests that
the rupture had a slight downdip component of unilateral rupture velocity (about

5Z) and a rupture velocity of about v = .6 Because of the narrow band of the

8"
short period WWNSS instruments and the (unknown) crustal structure beneath the
stations whose P-waves were analyzed, we can only use these results qualitatively.
However, it is important to note that mearly all of the vz-plots fall within the
model range spanned by Figure 12, from which we have determined the variance of
our source parameter estimates. As we have estimated the ratio e' for these

events, specifying an approximate rupture velocity and rupture geometry then

determines our final models.

Final Source Models

For the final source modelling we have used two circular versions of the
quasi-dynamic models. These models have the dynamically feasible "elliptical"

or self-similar slip distribution during rupture growth, and causal healing.




Figure 13 shows half-view snapshots of the slip velocity for this circular model.

Since the displacement spectra from these events falloff faster than w™? , we
presume that the ruptures stopped gradually rather than abruptly, [Madariaga,
1978], and this gradual stopping is incorporated into the models.

Since both events were fit with circular models, the rupture velocities of

r the two models are slightly different: v = .6 8 for the 22 0153 event and
: v =,55 8 for the 0356 event; similar results would have been obtained if we

had fixed the rupture velocity using a slightly asymmetrical model for the 0356

event, and a rupture velocity of .6 _, lowers the stress estimates by ~ 20%.

8
3 The source parameters obtained from our model fits are listed in Table 3. We

have calculated the moment and radiated seismic energy using the formulae, ]

5 B(g,507 _
n =4 pE) 8@T @¥ s @ ——— i, )
F°°(6,9)8
p(z) 8 (2)® [ R(z,E )7 2 ;
E = I 8)
: & (¢)s Y (0,4)8 =

where p(Eo), p(x) = 3.4, 2.5 gm/cm3 and 8 (§°), 8 (x) = 4.4, 2.5 km/sec are the
densities and shear wave velocities at the source and receiver, respectively,
R(.g,go) = 52 km is the geometrical spreading factor calculated following New-
man [1973] and Fsv(e,¢) = ,46 is the radiation pattern factor. ¢ 8 (30°) .2 is

the fractional energy flux, which relates the time integrated energy flux at a

particular takeoff angle to the total radiated seismic energy [Boatwright, 1979].

The effective stress or the dynamic stress drop, [Brune, 1970], also may be
calculated directly from this modelling. Since the quasi-dynamic models incor-
porate the self-similar slip distribution described by Hoshov [1964], Burridge
and Willis [1969] and others, the slip 23 distribution is scaled by the initial

relative slip velocity, A(o). This slip velocity is related to the dynamic stress

J
— —




by the approximate relation;

"

Au 9)

<
e lA

good for subsonic rupture velocities. Thus any model fit also determines effec-

tive stress by the formula;

1 S 1 1 >
2 = 2 = = R(E .z) u(z,t)
s 028 )T p@28 @7 =2 , e
3 F%(0,4) (z,t)®
a(z,t)
where = is obtained by scaling the data, u (x,t) to the synthtics,
Q(z,t)
g u(z,t)
2(z,t). The model fits give = = .38 and .34 for the 0153 and 0356 events,
Q(z,t)

respectively.

The results compiled in Table 3 show two systematic anomalies. For both
events, the effective stress is greater than the average stress drop, while the
apparent stress is substantially lower than te/4, which is the expected value

for frictional ruptures with v = .6 However, the gradual sopping of these

B .
- events may explain both anomalies. If the rupture nucleated in a localized
region of high stress, the average stress drop over the rupture area might be
much lower than the initial stress drop, while radiated energy would be low due

to the gradual stopping. Considering the relative uncertainties of these cal-

culations, these results are in reasonable agreement.

r



TABLE 1

Spectral Parameters

o153 0356
;sv «13 + .04 cem.sec «25 + .07 cm-sec
e 2.2 + .6 cm?/sec 3.1 + .8 cm?/sec
Vs 1.2 hz -8 hz
ns 5.1 hz 3.6 hz

t* «24 sec .37 sec




i
i
;
,
'

Method
Corner Frequency
Characteristic Frequency
Rise Time

Average

TABLE 2

Rupture Duration -:-

0153
<41 + .1 secs
;37 + .1 secs
<39 + .08 secs

-39 + .05 secs

0356
«62 + .2 secs
«53 + .15 secs
.60 + .1 secs

<59 + .1 secs




TABLE 3

Source Parameter

0153 Event

Radius - a = 1.2 kn

Moment - m_ = 3.5 + .8 x 10%“ dyne-cm

Stress Drop - Ac = 890 bars Range - 600-1100 bars
Effective Stress - ™ 1040 + 350 bars

Radiated Energy - E_ = 8.7 % 3.0 x 1020 dyne.cm

Apparent Stress - t_ 160 * 60 bars

0356 Event

Radius - a = 1.65 km

Moment - m = 6.7 + 1.5 x 102" dyne-cm

Stress Drop - Ac = 650 bars ; Range - 350-800 bars
Effective Stress - L 780 + 250 bars

Radiated Energy -~ Es = 12.4 + 4.0 x 1020 dyne:cm

Apparent Stress - L S 120 + 50 bars




56°

55°

54°

53° |
165° 164° 162° 160° 158° :




NNW SSE

VOLCANIC 2
AXIS L m oI s m TRENCH
q ey B 200 |
A T ¥ . . L
e s =
m™ o _un__u

3 o o IU’ 4
pFN 8 s
D%@ / /, A

% o .

1 Q@U \ //
/ /II 1

100t : : .
\
4 (n] o \ um v y
\

’ L ® ° ("] Lw

| E / ® o

LA
4 0 \ \\.\n #
. y ooe ¢lmn
40t -
(s] \ .\\. o e 4
\ s B o°n
’ ‘ n -
200t ,. . a

o
b
S

™




N 60°E —»

(=] o o
\\\ II
9 \
[ / m =
[ ] )
ﬁ Iul -0 oo \s
\ m
K s \ .
= / ﬁ. N \\\
{ a || ) —
\ / )
n ”"\\ n
ol
(8]

did NMOQ —»

T ——————




APRIL 6, 1974 0356
54.9IN 160.28W 40KM




r

i SHUMAGIN ISLANDS 0153 EVENT
Sanp Point SMAL N

VELOCITY 2

9((.n/srsc)ze
8 8

VELOCITY

k.



SHUMAGIN ISLANDS 0356 EvenT

Sanp Point SMAL )

VELOCITY 2

(cM/sEc)2
&
8

e

8
b

-‘

@
8

VELOCITY
2.007

CM/SEC

0-00 P Ny

0.00 ) 1.00

'
)

r
s




0153 EVENT

DISPLACEMENT SPECTRA

L
LR

(3ANLITTdWY LN3W3IV1dS1a)907

-S.00

L0G (FREQUENCY)




0356 EVENT
DISPLACEMENT SPECTRA

4

——
L

0-00T

s
+-

(3ANLITdWY LN3W3JVIdS1a)907

2-00

LoG (FREQUENCY)




-
SHUMAGIN ISLANDS 0356 event
GDH short period vertical
T
< 1
>
=x
o
i ®
= ol
; 3
1
-
]
time (secs)
5
]
o
%
©
(1)
>
$
13
o
o
@
h-J
e
time (secs)
[
[}
e
=
-1
")
a
~
(-9
©
=
3
—_—— 4
time (secs)
-
@ o
v
~
b
LA
b4
3
s
é -
b
-

-
-~
L
o
odpo
o=
>
=
=

time (secs)




e ————————— e

QUASI-DYNAMIC SLIP VELOCITY

a
t= .6~
63
oSS
o;::é:”‘"
a S5 .'ﬂ"?:':"‘::‘-':’:’.:’,:::’
t=1032 ST SRS

S

P —————




T GDH (P)

b-—o-—oip\/-\4
~>~SNG (sP)
~/e® —
.A/V\A HKC
—————
(sP)
PMG
(pP)

Variation of V2 Pulse Shapes

0356 Event




MODEL VARIATION OF SHEAR WAVE Vz PULSE SHAPES (eB - 300)
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BODY WAVE ANALYSIS OF THE ST. ELIAS EARTHQUAKE

. ;n order to investigate the complexity of this earthquake,
it is useful to consider both P and S body waves in the period
range from 2 secs to 50 ;écs. Using three WWSSN long-period seis-
mograms and the 1-75 Benioff seismograms recorded at Palisades,
we have established that the earthquake was made up of three
distinct sub-events, preceded by a small initial event. The
direction of rupture propagation appéars to be to the southeast.

In teleseismic body waves from a shallow fault, waveform com-

plications occur through the interference of the depth phases
(i.e., the phases reflected from the free sutfacg) and the di-
rect phase. To take out this interference, we construct a free- -
surface operator, FSO(t), for each body-wave arrival, using the
appropriate radiation patterns and reflection coéfficients for

Thest  vadkicchon patterns ove plotred T Cigure
each phase to determine its relative amplitude. . Th operator is
then deconvolved from the actual pulse shapes in order to obtain
approximate whole space (AWS) pulse shapes, i.e., pulse shapes
‘without the interference effects of the free surface. The delays
of the depth phases were adjusted by minimizing the deconvolutional
noise, thereby obtaining an average source depth. This approach
presumes that thg pulse shapes of the depth phases are identical

to‘the pulse shapes of the direct phases. Since far-field pulse

shapes depend only on the vector slowness of the body wave along

the fault plane, for a horizontal fault plane the pulse shapes




are identical. Thus this analysis is well suited to earthquakes
occurting on very shal;owly dipping fault planes.

" " The steps of‘the analysis.are shown in Figure 1, using the
P-wave arrival at station HKC (Hong Kong) as an example. The lower-
most trace is the bandpassgd long-period seismogram; the trace
above it is the deconvolved (from the instrument response) ground
velocity. For this arrival, FSO(t) has a positive pulse for the
direct P, a very small positive pulse for the pP and a large nega-
tive pulse for the sP. The convolutional inverse, labelled IFSO(t),
is shown next to it. The result of the deconvolution is the AWS
velocity, which is then integrated to obtain the AWS displacement,
shown at the top of the figure. The AWS pulse shapes clearly show
the three major sub-events, which are labellea 1, 2, and 3. The
initial event shows up as a s;all step in the seismogram which
becomes a single bump in the velocityg tvad.

The AWS pulse shapes for the five body wave arrivals are com-
piled in Figure 2 along with their epicenter to station azimuths.
There is substantial variation with take-off direction and wave-
type. The pulse shapes at azimuths away from the direction of
rupture propagation, i.e., the HKC P-wave and the KEV S-wave, show
the longest pulse rise times (i.e., the time from the onset of
event 1 to the peak of event 3), while the PAL S-wave has the
shortest. Note that because these pulse shapes depend on the slow-
ness of the body wave, the S-wave pulse shapes vary more strongly r

than the P-wave pulse shapes. This accounts for some of the dif-




ference between the P-wave and the S-wave at Palisades. The con-
structive interference of the rupture propagation, as seen in the
S-wave pulse shape, smoéths the three sub-events into a single
pulse; The marked separation of events 2 and 3 in the PAL P-wave
may be the result of a slight difference in the focal mechanism
of the two events, as this arrival is at a P-pP-sP node.

Using the pulse rise times, t%, of the sub-events, we can

calculate their rupture lengths from the relation

L A4
1!5'7(1--5“8 z)

where £ is the rupture length,  is the angle between the direction
o€ vtb?c:k) C/

of rupture ptopag;tion and the takeoff direction of the body wave
and v is the rupture velocity,.assumed to be 2.5 km/sec. This
calculation gives £ = 9, 24.and 16 km for the three events. The .
PAL S-wave gives a total rupture length of 68 km; however, as

the average rupture velocity for the whole event must necessarily
be smaller than the rupture velocities of the sub-events, this is
an overestimate.

The average rupture depth was determined using the PAL pulse
shapes, as the free-surface operators for these arrivals were the
most sensitive to the delay times of the depth phases. A sS delay
of 6 seconds and a sP delay of 5 seconds gave the least deconvolu-

Sowrce
tional noise, fixing the average »uptuse depth at = 11 km.




The deconvolutional analysis also aids the determination of
the body-wave monent,las it coalesces the amplitude information of
the direct phase and tﬁe depth.phases into a single pulse. The
uomenﬁs of the sub-eventsiwere calculated to be .8, 3.5 and
7.6 x 1026 dyne-cm, .respectively, so that the total body-wave
moment is 1.2 x 1027 dyne-cm. The initial event has a moment
< 4 x 1025 dyne-cm. Because the pulse shapes for events 2 and 3
are not separated on most of the arrivals, the division of the cumu-

lative moment between these events is somewhat ambiguous.

John Boatwright

Lanont-Doherty'Geological Observatory

JB/ma




FIGURE CAPTIONS : =4

Figure 1.

Figure 2,

Figure 3.

(optional)

Steps of the deconvolutional analysis, as applied to
the HKC P—waye._ The lowermost trace is the bandpassed
(1.2 secs to 66 secs) long-period seismogram. The
trace above it is the deconvolved ground velocity,
which has been corrected to extract the effect of the
high pass filter to a unipolar displacement pulse.

The FSO(t) and IFSO(t) operators are described in the
text. The AWS velocity is the result of deconvolving
FSO(t) from the ground velocity. The time marks are

at 100 sec intervals.

‘Approximate whole space displacement pulse shapes,

obtained from the'body-wave arrivals. at four statioms.

¢ is the azimuth from the epicenter to the station,

as measured from north. The numbers identify the

sub-events discussed in the‘text. The dashed line

on the PAL P-wave is the presumed baseline, as the

sample could not be adequately filtered to obtain a

flat baseline.

Radiation patterns for the phases of the P and SH

arrivals analyzed. The squares are the takeoff angles
Thage ore

to the stations; from left to right - HKRC, KEV, ESK,

and PAL, The sP angles have been corrected for the

S-P reflection at the free surface.
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ELEMENTARY SOLUTIONS TO LAMB'S PROBLEM FOR A POINT SOURCE AND THEIR RELEVANCE

TO THE STUDY OF SPONTANEOUS CRACK PROPAGATION "N THREE DIMENSIONS

By Paul G. Richard32

ABSTRACT

Certain exact solutions to Lamb's problem (the transient response

of an elastic half-space to a force applied at a point) involve the com-

putation merely of three square roots, and about ten arithmetic operations
(+, -, X, ¥). They arise when both source and receiver lie on the free i
surface. It is just these solutions which are needed in a method due to

Hamano for obtaining the slip function (displacement discontinuity), as ! 3

a function of space and time, for planar tension cracks and shear cracks
which grow spontaneously with arbitrary shape. The solutions are described i
here in detail, for an elastic medium with general Poisson's ratio. They

include perhaps the simplest-possible example of the P wave.

1 Lamont-Doherty Geological Observatory Contribution Number 0000.

é Lamont-Doherty Geological Observatory and Department of Geological
Sciences of Columbia University, Palisades, New York 10964
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INTRODUCTION

A thorough understanding of motions in an elastic half-space, sub-

jected to an applied force, is an essential part of wave-propagation
theory needed to interpret seismic waves. For this reason, half-space
problems have been the subject of an enormous literature, beginning with
Lamb's (1904) classic study of displacements set up by forces applied at

a point and along a line on the free surface. Here, I give some new

solutions, these being the horizontal motions of the free surface for a
horizontal force applied as a step in time at a point also in the free
surface. (Throughout this paper, the half-space is oriented with a hori-
zontal free surface. Taking cartesian axes with x; as the depth coordinate,
into the half-gpace, the free surféce is x, = 0.)

Whatever the value of Poisson's ratio, the new solutions (which aug-
ment the work of Pekeris, 1955; Chao, 1960; and Mooney, 1974) are ex-
tremely simple to compute. However, these formulas would be only a minor
curiosity if it were not for one very important application, in which
speed of computation is essential. This application is suggested by .
Hamano's (1974) method for studying spontaneous crack propagation. Since i
it is the larger problem of crack propagation which has motivated the

present study, I shall in what follows give a brief review of Hamano's

method, before giving the simple solutions to Lamb's problem.




MOTIVATION

Within an infinite homogeneous elastic medium, initially at rest,

suppose that a crack nucleates at time t = 0 and subsequently grows

within the plane Xy = 0. Then a useful representation of displacement
1 = u(x,t) throughout the medium can be given as

o @

u, (x,t) =_£ dr-i_i dg,dg, Gop (x,t-1;¢ ,£,,0,0) T, €,8,,0. (@)
Here, an (f,t;g,r) is the Green function for the medium, being the n-
component of displacement at (§,t) due to a unit impulse applied in the
p-direction at position 5 and time t. For purposes of computing an,

it is required that the whole plane X, = 0 be a traction-free surface.

? (El,gz,r) is the actual traction occurring on the whole plane X, = 0 of
which the crack is a part. Equation (1) is described further, and proved,

by Das and Aki (1977a) and Aki and Richards (1979, their equation 2.43). In~
tuitively, the above representation can be understood as replacing the

actual (crack) source of radiation by a whole plane, separating the medium
into two half-spaces. Into each half-space, waves are radiated due to

the same tractions as those set up by the crack, applied over the half-

space surfaces. From the space-time element drdgldgz there is an applied

impulse of strength dtd&ldsz Tp (51,52,1) in the p-direction. 1If the

displacement contribution to u, (x,t) from this element is to be considered
in isolation from tractions acting elsewhere on x3 = 0, then the ap-
propriate Green function an must be constrained by having zero traction

over the surface of the half-space. Hence, it must be a solution to Lamb's

problem.




Hamano (1974) pointed out that for shear cracks and tension cracks,
a soluble scheme for the displacement discontinuity [g], say, across the
crack can be set up from equation (1) by considering the X position it~
self in the crack plane, x = (xl,xz,O), and using symmetry properties of
u and T across X3 = 0 to constrain the displacement and traction on dif-

~

ferent parts of the plane of the crack.

For a general tension crack, [g] = [0,0,u3] and T = (0,0,T3) so that
the only Green function needed is Gj.

For a general shear crack, [g] = [ul,uz,O] and ? = (TI,TZ,O) so that
the only Green functions needed are Gll’ G12’ G21 and G22 (see Das and Aki,
1977a, for a related study of two-dimensional cracks). The jump in u; is zero,
because opposite faces of the crack remain in contact. T3 is zero, because
planar shearing cannot change the normal stress on the crack plane. Together

with G55 for tenmsion cracks, these five different Lamb problems/Green functions

need be studied only for the case that both source and receiver lie in -
the free surface of the half-space. Hamano's method is important in
offering the chance to study spontaneous crack growth for completely gen-~
eral shapes of planar cracking. This paper contributes to that goal, by
showing that just these Green functions are almost trivially simple to
compute. For completeness, a single integral is also given below, in terms
of which the remaining four components, G;3, G23, G31, G32, can efficiently

be computed.

FORMAL STATEMENT OF PROBLEM, AND ITS SOLUTION

In this section, explicit formulas are derived for anﬂ (xl,xz,o,t;El,Ez,0,0),

this being the n- component of displacement at position (xl,xz,O) and time t,




within the free surface (x3 = 0) of a2 homogeneous, isotropic elastic half-
space, due to a unit-step force in the p-direction applied also within

the free surface, at position (51,52,0), the step occurring at time O.
Once this solution has been found, an for an impulse (as required in the

section above) is given by

3 H
8 o (x,t-1;€,0) = 5 (x,8;€,0)
s = t-1T
Since related problems have had such a wide exposure, I shall abbre-
viate the description of how a solution is obtained. Thus, in general,
the solution to Lamb's problem for a point source can be obtained as an

integral over just one variable. In our case,

1 2
GH (xl,xz,O,t;0,0) = 12uz Imag { f H(T—l)y
: : 1 (T2-P%)*  [(A-2P2)2+4xYP?)

L P dP

1
where u = rigidity, r = (x12+x22)2, H is the unit Heaviside step function,

and capital letters in the integrand denote dimensionless quantities:

A = 02/82(a = P-wave speed, 8= S-wave speed)
T = at/r (T = 1 being the P-wave arrival time)
L = (1-P2)li or -i (92—1)li , Y = (A—Pz)% or -i (gifA)%,
Imag {} denotes the imaginary part of {}, and
Ly; = {(T2-P?)[2Y-4X+(A-2P2) /Y] + AY} cos?¢
- {T2[2Y-4X+(A-2P2) /Y] - AY} sin?¢

L1z = Lp; = (2T2-P2) [2Y-4X+(A-2P2) /Y] cosé siné

(6 ))




F

Loz = {(T2-P2) [2Y-4%+(A-2P2) /Y] + AY} sin?¢
. -{T2[2Y-4X+(A-2P?) /Y] - AY} cos?$
and

Li3/cosé = Lp3/sing = - L3 /cos¢ = -L3,/siné = T(A-2P?) - 2TXY, where ¢
is given by x; = rcos¢, X, = rsin¢, so that ¢ is the azimuth to x.

Formula (1) can be written down from Johnson (1974, his equations 26-

—

34, but using P2 for his a?t2r=2 - ¢2p2)., OQur variable P is a (dimension-
less) horizontal slowness, and (1) is essentially a Cagniard solution in
the form advocated by Helmberger (1968). Both source and receiver lie in
the free surface, so the Cagniard path lies just above the real P-axis in

the complex P-plane (see Figure 1, and caption).

In fact, the P-integrals for Glln, Glzn, GZIH, G22H and G33H can be
given in closed form. This is not possible for the four remaining entries
in GH, but these four are all proportional to just one integral which is

still fairly simple to compute. We note first that

G11 (%,%2,0,£50,0) = [I;(T) cos2$ - I,(T) sin2¢]/(mur)

G12H = G21H = [I;+I2] cos¢ sing/(mur)
G22H = (I, sin?¢ - I, cos?41/ (wur) 3
Gagh = I3(T)/(mur)

where arguments have been written out explicitly only for the first of

equations (3). Just three functions of dimensionless time are needed to

evaluate these five components of GH, namely




\
\
\

T

H(T-1)  (T2-P2?) [2Y-4X+(A-2P2) /Y] + AY

(D) =L meg (s

1! PdP }
1 (T2-p2%)%\ (A-2P2) 244XYP?
D T _H(T-1) [ T2[2Y-4X+(A-2P2) /Y] - AY
I(T) = < Imag {lf (12-p2)% \_  (A-2P2)244xYP2 . RP} (4)

and

T

131 = tnag (B =

PdP } .
1 (12-p2) ? | (A-2P2) 244XYP2

It follows from (3) that I; and I3 are displacements within the vertical
plane containing source and receiver, like the dominant motion in P-SV, whereas I,
is a displacement transverse to this plane, like the dominant motion in SH. I

give analytic expressions below for each of these three integrals. A fourth

dimensionless solution to Lamb's problem is introduced via

G137 (x1,%2,0,t30,0) = I,(T) cos¢/(mur),

(5)

Gg3H = I, siné/(mur), G31H = - I, cosd/(mur), and G32H = - I, sin¢/(mur)-.

The integral for this solution is

% T - g _op2 i \,‘
I(m = 1 Img( BO=D. I(-2P?) - omxy

PdP } (6)
1 (12-p2)* | (a-2P%)% + 4xvp?

which cannot be given in closed form.




For a vertical point force, Pekeris (1955) obtained a closed-form solu-
tion for the vertical displacement (our I3) and a sum of elliptic integrals
for the horizontal displacement (our I,). His solutions were restricted
to the case a2/82 = 3 (Poisson's ratio = 0.25), and Mooney (1974) indicated how
the evaluation of I3 might be carried out for any value of a2/82 (though Mooney
did not publish the solution formulas). For a horizontal point force, in a
medium with a2/82 = 3, Chao (1960) obtained closed-form solutions for the hori-
zontal displacements (our I; and I,) and a sum of elliptic integrals for the
vertical displacement. Solutions themselves have not previously been given
explicitly, for general a2/82, for any one of the four basic (dimensionless)
solutions I,.

i

In every case, the basic approach involves writing

1 - (a-2P2)2-4xYP? _ (a-2P2)2-4xYP? N
(A-2P2) 244XYP2  (A-2P2)% -16X2Y2pP% Cubic(P2)

so that the new denominator, of sixth order in P, is real throughout the
P-axis iategration and has no branch cuts. The imaginary parts of the new
integrals are easy to identify (together with a semi-residue contributiom to
I, from indenting around the Rayleigh pole: see Figure 1 caption). If roots
Ry, Ry, R3 are found for the cubic in P2, integration for I;, I, I3 becomes

possible using the par;ial—fraction decomposition

1 & wabe @ b PR _ (8)

(A-2P2)4-16X2Y2p2  P2-R;  P2-R, P2-R3




The Rayleigh pole lies at P = Rgli = a/y (always on the real P-axis,
just to the right of P = a/B, since Rayleigh wave speed y is a few percent
less than g). If Poisson's ratio is less than a critical value, approx-
imately 0.263, then R; and R, are real and lie between O and 1. But, for
greater values of Poisson's ratio, R; and R, are complex conjugates, as
are a and b in (8), though c is always real. In this case there are poles in
the complex P-plane which can be associated with the so-called P wave (Gilbert
et al., 1962; Chapman, 1972; Aki and Richards, 1979), appearing between P-
and S-arrivals. Rl12 and Rzl5 lie on a Riemann sheet different from that which
contains the Cagniard path.

Substitution of (8) into (7) and (4) leads to 24 integrable terms for
each of I, and I,, and 6 such terms for I3;. Extensive cancellation does
eventually occur. The solutions, involving real positive constants
¢ (3 =1, ... , 7) and complex constants Cx (k =1, 2, 3), are as
follows:

For times prior to and including the P-arrival, T = 1
I,=1I; =13=0. 9)

For times between P- and S-arrivals, 1 < T < o/B, there are two
different kinds of elastic media to consider. If Poisson's ratio 1is

less than 0.263 (corresponding to A = a2/g2 < 3.11),
Il = T2[c1 (TZ-RI)—%- (:2('1'2-R2)—;5 - C3(R3‘T2)-%]
I, = —cy + ¢ (TZ-RI);’ - ¢y ('L'Z-RZ)’5 + ¢ (33-1'2)’5

(10)

I3 = cy - C5 (1*2-1:\,)"5 + cg ('rz-n,)"’ - ¢y (n,-rz)“‘ "




If Poisson's ratio is greater than 0.263, it is necessary first to define

the complex square root (complex, because R> is then complex),

%

CROOT = [(1-Rp)(T2-Ry)] (11)

in which the choice of sign is made such that the complex number

1 + 2 (1-R; - CROOT) /(T2-1) has magnitude less than unity. Then,

I, = -T2 [Real {C;/CROOT} + c;3 (Rs-'rz)'lil
I2 = -cy - Real {C; * CROOT} + cg (R3—T2)!5 (12)
I3 = cy + Real {C3/CROOT} -c7 (Rs-rz)"’ ‘

For times between the S-arrival and the Rayleigh wave arrival,

a/g < T < aly,
I; = 0.5 - 2c3 1:2(1&3-'1'2)'!5

I = =2¢y + 2c3 (Ra-Tz)ls (13 l

¥

I3 = 2c4 - 2¢7 (R3-T2)"

For times after the Rayleigh arrival, a/y < T,
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I, = 0.5

I = -2¢c4 (14)

I3 = 2¢cy .

Constants in the above solution need be evaluated just once for a
given elastic medium, specified by the ratio a2/B2. An effective approach
is first to find the largest root R3 of the Rayleigh cubic; then to factorise
PZ-Rg from the cubic and solve a quadratic for R; and Ry. Constants a, b, ¢

in (8) are given by

a ! = 16(A-1) (R;-Ry) (R3-R;)
b-1 = 16(AP1)(R1-R2)(R2- R3) (15)

¢! = 16(A-1) (R3-R;) (R2-R3) .

Then
c1 = -2aA(A-R;) (1-R;) ca = 2bA(A-Rp) (1-Rp)
3 = =2cA(R3-A) (Rg-1) cy = A/(8A-8)
cs =-2aAR; (1-R;) (A-R;) cg = 2bARp(1-Rp) (A-Rp)

s A A AT R APPSO B 355 1 Ve e e o <




cy7 = -2cARj (113-1)(R3-A);E C1 = 4bA(A-R3) (1-Rp)

C; = 4bA(A-Rp) C3 = bA(A-2R;)2(1-Rj).

Solutions given above for I,, I, I3 require at most the evaluation either
of three real square roots, or (depending on Poisson's ratio) the eval-
uation of one complex square root and one real square root. These (worst)
cases occur only between P- and S-arrivals. In terms of these closed-form
solutions, all the five components of gg relevant to Hamano's method for
studying spontaneous shear and tension cracks can be rapidly computed via (3).

Although I, can be given in terms of elliptic integrals (with complex
arguments when Poisson's ratio is greater than 0.263), it is probably more

efficient directly to integrate as follows:

0 for T < 1;

"2 2 p2y%(a_9p2
\ ;02 (AP FA-2pY) for 1 < T < a/B,
" T 0 (A-2P2)4-16X2Y2P"

I,(T) =} where P2 = (T2-1) sin2X + 1;

( 2TA ;/2 (P2-1) (A-P2) (A-2P2)d¥ _ B(T-a/v)e T gor a/p<rT,

{ Al (T2-P2) *[ (A-2P2) 4-16X2Y2P"] (Tz_ga)‘s

\

\‘ where P2 = (A-1)sin?¥ + 1. (16)
\

Integrals with respect to X and Y here have well-behaved integrands. Note

1
that, at time T = a/y = Rgﬁ, a singular Rayleigh wave arrives (see Figure 1lb
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caption) with strength proportional to the positive real constant
- 3cA(A-2R3) 3/R3. [¢%))

In Figure 2 are shown the time-dependences of I, Iz, I3 for four

different values of a2/82. We note the following basic properties: (i)

Displacements I} and I3 are continuous across the P-arrival, as are I, and
the particle velocity dI;/dT. These resulits follow from (10), (12), and rela-
tions between constants appearing in these formulas. (ii) I, and
I3 are continuous across the S-arrival, but have discontinuous slopes,
whereas I, itself is discontinuous. (iii) I, is continuous across the
Rayleigh-wave arrival time, but I, and I3 are singular. All three solu-
tions are exactly constant after the Rayleigh singularity: these constants
must then be the static solutions. (iv) For the horizontal displacement due
to a horizontal force, the step (in I,) at the S-arrival can be seen from
(3) as having the orientation of an SH-wave, whereas the singularity
(in I;) at the Rayleigh-arrival occurs as P-SV mﬁtion. However, because
P-wave motion is not in general exactly longitudinal, the transv;rse motion
(given by I;) does begin at the P-wave arrival. (v) A P wave is apparent
in I3 at times between and P- and S-arrivals, becoming more apparent with
increasing values of a2/B2. Since it arises from a single algebraic
expression, the term Real {C3/CROOT} in (12), detailed properties of this
wave are easy to investigate.

In Figure 3 is shown the time-dependence of I, for four different
values of a2/B2. Romberg integration was used, requiring occasionally up
to 128 intervals for 1% accuracy. There is a discontinuous slope at the P- and
S-arrivals; a jump to a singularity at the Rayleigh arrival; and thereafter

a gradual decay to the static limit.
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CONCLUSIONS

Perhaps the main achievement of this paper is the exact form of constants
cl,....,c8 (positive real, if used) and complex constants Cl’ CZ, C3, in terms
of which the complete solution to Lamb's problem can be given for any orient-
ation of applied force, any displacement component and any value of Poisson's
ratio, provided both source and receiver lie in the free surface.

Four scalar solutions in G, involving the cross-terms (vertical or hori-
zontal displacements due respectively to horizontal or vertical applied force),
cannot be given in closed form, but a well-behaved integral solution is
possible in general.

In the case of horizontal displacements due to a horizontally applied
force, the solutions are relevant to a method for studying spontaneous shear
cracks. For the case of vertical displacement due to a vertical force, the
solution has relevance to tension cracks. In both these cases, solutions
(3), (9)-(14), for a step-applied force, are so simple that the following
can readily be derived in closed form: (a) solutions for an impulsively-
applied force; (b) solutions averaged over (r, r+Ar), (¢,¢+A¢) and (t,t+At);
(¢) 14 of the displacement fields Ban/QEq = an q due to a single-couple.

Specifically, we can use reciprocity on an so that the derivative is con-

ducted with respect to receiver coordinates. From the five closed-form
solutions in 9, 10 single-couple displacement fields can be obtained by
differentiating in the 1- and 2-directions, parallel to the free surface.
The solutions for (n,p,q) = (1,3,3), (2,3,3), (3,1,3) and (3,2,3) can also

be recovered in closed form, by using the linear strain constraints at a

stress-free surface.
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The simplicity of the five scalar solutions in G, which are associated
with Hamano's method for studying cracks, is so remarkable that it gives
high hopes of successful development of a 3-dimensional study of spontaneous

shear and tension fractures.
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Figure 1:

Figure 2:

FIGURE CAPTIONS

The Cagniard integration path for (1), (4) and (6) is shown as a
solid heavy line. Singularities of these integrands are shown
in (a). They consist of branch cuts trending to the right along
the real P-axis from points 1 and a/B, and a pole at a/y (y being
the Rayleigh wave speed). As well as the pole at a/y = R3%, we
also show schematically the poles at RI%’ R;i in the right half-
plane. R;, R, and R3 are roots of the Rayleigh cubic in P2,
(A-2P2)*-16X2Y2P* = 16(1-A) (P2-R;) (P2-R,) (P2-R3). For A < 3.11,
R; and R, are real and lie between O and 1. But for A > 3.11,
R; and Ry are complex conjugates. Accurate locations for different
A are given in Figure 3b.

In (b) is shown a path of integration in the vicinity of the
Rayleigh pole. In the limit, as the semi-circle radius shrinks
to zero, integration reduces to a principal value integration
Plus -im x residue at the Rayleigh pole. The residue is imaginary
from the integrands (4) of I;, I, I3, and hence gives zero net
effect when the imaginary part is evaluated after multiplication
by -in. But the residue from integrand (6) for I, is real,
leading to a non-zero contribution from the Rayleigh pole when

T > aly.

Here are shown the fundamental time-dependences of displacement
for (a) I;, the longitudinal horizontal displacement for a

horizontally-applied force; (b) I, the transverse horizontal




Figure 3:

displacement for a horizontally-applied force; and (c) I, the

vertical displacement for a vertically-applied force. We have
chosen to plot values of I3 positive downwards, so that upward
values in (c) correspond to - I3, and hence to the convention
common in seismology of recording vertical motions as positive
upwards.

In each case, the time-dependence is worked out for four
different values of a2/B2. Time for these four cases is scaled
so that P-arrivals (at T = 1) and S-arrivals (at T = a/B) are
aligned. Values are plotted, as heavy solid lines, only between
amplitudes +1. I; and I3 in fact are singular at the Rayleigh
arrival (marked R), thereafter jumping immediately to the static
value.

Dotted lines give values of I;, I,, I3 scaled up by a factor
of 15, and hence display the detailed time-dependence at low

amplitudes.

(a) Values of the fundamental solution I, as a function of
time. A closed-form solution is not possible in this case.
Computation is for four different ratios of a?/B2. Dotted lines
show values of 15 x I,.

(b) Since T can be regarded as a value of P, the dimensionless
horizontal slowness, we have here shown the complex P-plane
with the same scale as the T axis in (a), and Figure 2a,b,c.
Values of 15 x I, are repeated from (a). Singularities RI%,

Rz%, ng here, for different values of azlsz, occur then at times

(P-values) which are indicative of what turn out to be properties
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of the P and Rayleigh waves. Thus, Rz!i for a? = 2382 is almost
coincident with the ordinary P-wave arrival, making the latter
highly impulsive for I; and I3 because of the term in

(Tz-Rz)-%. At larger a2/82, the occurrence of complex R;i j
with real values greater than one leads to the emergent broad

pulse between P- and S-arrivals in I3 and I,. It is interesting |

that such a P wave is not apparent for I; and I,.
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Figure 3




